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ABSTRACT

MUDs (Multi-User Domains/Dungeons) are multi-user, text-based, networked
computer environments, in which users can interact with each other in a type of text
based virtual reality. While traditionally used for text based adventure games, or social
worlds, MUDs are increasing being used as the backbone for Computer Supported
Collabrative Work (CSCW) or Anchor Desk Systems. Within the military domain
Anchor Desks provide a single contact point for specialist areas (for example, logistics
or intelligence, etc.) within a military organization. This paper explores the issues of
interoperability between MOOs (Object Oriented MUD), and describes three different
prototyped techniques for MOO Interoperability.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
*

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION




Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555

Fax: (08) 8259 6567

© Commonwealth of Australia 1998
AR-010-539

May 1998

APPROVED FOR PUBLIC RELEASE



A Comparison of Interoperability Architectures
within Object Oriented Multi-User Domains

Executive Summary

MUDs (Multi-User Domains/Dungeons) are multi-user, text-based, networked
computer environments, in which users can interact with each other in a type of
text based virtual reality.

Within the military domain MUDs have been used as a backbone for Anchor
Desks. Anchor Desks provide a single contact point for specialist areas (for
example, logistics or intelligence, etc.) within a military organisation. Anchor
Desks are also responsible for the collection, storage and dissemination of
information related to that specialised area.

When used as a backbone for Anchor Desks, MUDs have been used to provide
the basic user/user communication and user/object interaction facilities, as well
as providing support for basic data storage.

When using a MUD to support an Anchor Desk, a key design decision is; how
should the organisation be divided into the MUD? Should all the Anchor Desks
within a Command Centre used the one MUD. Should all Anchor Desks of the
same type, for example logistics, inhabit the one MUD, regardless of their
location, or should only one MUD be used within the whole military
organisation?

Regardless of how an organisation is divided into a MUD, allowing users to
interact with users and objects out side their local MUD is a vital function if
MUDs are to be successfully used to support Anchor Desks.

This paper address the issue of integrating, two (or more) MUDs together, so
that the services, or data provided by one MUD is available to the users of a
remote MUD. Three different solutions to the problem of interoperability are
developed, and the advantages and disadvantages of each is explored.
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1. Introduction

MUDs (Multi-User Domains/Dungeons) are multi-user, text-based, networked
computer environments, in which players (users) can interact with each other,
or other objects, in a shared space.

The shared space provided by the MUD often follows normal architectural
conventions of rooms, exits, doors, etc. Users are free to navigate the space in an
intuitive fashion. For example to exit a room you must use a door. MUDs also
include objects (which can range in complexity and function), which users are
free to manipulate, or use, in any way consistent with the MUD and the rules of
the object. For example, you can’t eat an object which can’t be eaten.

For the user, the MUD provides a type of text based virtual reality. The space
you as a user inhabit, is also inhabited by other users and other objects. The
view of the virtual reality is shared by all users within it, through the common
descriptions of the objects, users and interactions provided to all users within
that space.

While recreational MUDs have been extremely popular for many years, there
has been a growth in the use of MUDs for non-recreational use. This trend was
highlighted by the inclusion of a workshop - “Design and Use of MUDs for
Serious Purposes” at the 1996 Computer Supported Cooperative Work (CSCW)
conference [6].

Perhaps the most popular, serious use for a MUD is as backbone for CSCW
systems. When used as a backbone for CSCW systems, the MUD provides the
basic user/user communication and user/object interaction facilities. The
CSCW system then sits ‘on top of the MUD kernel and provides the user with
specific CSCW tools and features.

Within the military domain MUDs have been used to support Anchor Desks.
Anchor Desks provide a single contact point for specialist areas (for example,
logistics or intelligence, etc.) within a military organisation. Anchor Desks are
also responsible for the collection, storage and dissemination of information
related to that specialised area. As with CSCW systems, MUDs have been used
to provide the basic user/user communication and user/object interaction
facilities, as well as providing support for basic data storage.
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When using a MUD to provide basic user/user communication, user/object
interaction and basic data storage, a key design decision is; how should the
organisation be divided into the MUD?

Should a MUD used to support a CSCW system, for example, be divided on a
work group bases, so each nominal work group within the organisation has its
own MUD? Or should the division be based on the location of the users, or
should the whole organisation use the one MUD?

When using a MUD to support an Anchor Desk, the problem is similar. Should
one specialised anchor desk inhabit one MUD? Should all the Anchor Desks
within a Command Centre use the one MUD? Should all Anchor Desks of the
same type, for example logistics, inhabit the one MUD, regardless of their
location, or should only one MUD be used within the whole military
organisation?

Regardless of how an organisation is divided into a MUD, allowing users to
interact with users and objects outside their local MUD is a vital function if
MUD:s are to be successfully used as the kernel for either a CSCW or Anchor
Desk system. This paper addresses the issue of integrating, two (or more)
MUD:s together, so that the services, or data provided by one MUD is available
to the users of a remote MUD.

This paper first examines the use of MUDs as CSCW backbones. Several of the
advantages and disadvantages of using MUDs as CSCW backbones are
explored. Next the design issues raised by MUD interoperability are explored,
and an ideal architecture is described. (This architecture is ideal for the needs of
this specific project, not necessarily for all MUD interoperability projects).
Finally this paper describes three different interoperability architectures
developed, the performance of each, and how well each meets the goals of the
ideal architecture.

1.1 Why MUDs?

While the primary uses of MUD:s are still text based adventure games, or as text
based social worlds, MUDs have increasingly been used successfully as the
backbone for interactive CSCW systems.

Using a MUD as the backbone for a CSCW system affords the CSCW developer
several advantages. The major advantage is in being able to use the existing
MUD'’s features to handle the base communication, user control, object
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movement and user/user and user/object interactions. These functions are vital
parts of any CSCW system, and by using a MUD, developers can reduce
development time and effort.

As well as providing the object/user and user/user communication framework,
several MUDs are extendible; the landscape or environment of the MUD can be
expanded by its users or the CSCW developers. This powerful feature can be
used to provide a high level of customisation and expendability to a CSCW
system.

MUDs are also available for nominal or no costs. For example, Xerox’s
LambdaMOO, is public domain, available for several UNIX platforms, and is
shipped with full source code.

However, use of an existing MUD as a backbone for CSCW systems does have
several drawbacks.

All current MUDs are based around a central server. While this architecture is
simple to implement, it does create a bottleneck when dealing with many users,
because all user/user and object/user interactions must pass through the
central server, regardless of the relative locations of the users. The problem can
be exacerbated by the nature of graphical CSCW systems, which can generate a
lot of complex change requests and action notifications. In a central server
architecture these change requests and action notifications must flow from the
generating user to the server, then from the server to any interested/relevant
users.

The text only interface is another drawback of using MUDs as a CSCW
backbone. While several projects have developed WWW or other GUI interfaces
for MUDs, they are often tied to a specific MUD, and as yet there is no
standard. Also the development of proprietary WWW or GUI interfaces adds
an additional layer of complexity to a CSCW development.

2. Other MUDs Projects

Currently, there are several projects using a MUD as the backbone for CSCW
development, these include;

e NRAD’s C2MUVE system [1]
e The CVW system at MITRE (2]
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* e Project Jupiter at Xerox’s Palo Alto Research Centre [3]
e CAPER/CAETI Architectures Project [4]

Of these projects only the CAPER/CAETI Architectures project and NRAD's
C2MUVE project have explored MUD interoperability.

The CAPER/CAETI project has so far focused on the user and usage issues of
MUD interoperability. While they have defined the higher levels of MUD
interoperability (how it should look to a user, rules controlling the movement of
objects between MUDs etc.) they have not defined any of the lower level
functionality needed by MUD interoperability.

3. MOO Interoperability

The MUD selected for this project was Xerox’s LambdaMOO. MOO (MUD,
Object Oriented) was originally developed by Stephen White at the University
of Waterloo, and enhanced by Pavel Curtis at Xerox PARC. Through out the
rest of this paper the term MOO is used to describe the specific MUD selected.
While most of the material covered by this paper is equally applicable to other
specific MUDs, some issues, like object inheritance, or the concept of library
functions, may only be applicable to the specific MOO selected.

MOO interoperability can be seen as the functions provided by a MOO which
allow users to interact with objects parented by a remote MOO. Objects can
include any MOO object; users, user developed objects, rooms, etc. Interaction
can range from viewing an object’s property to executing an object’s verb.

An interoperability architecture, then, describes the different architectural
components (objects, servers, etc.), the services they provide, and the
interaction between the components which support MOO interoperability.

This very broad definition of MOO interoperability, and interoperability
architecture, raises three key issues; the level of interoperability support (what
MOO functions should an interoperability architecture provide, how do they
integrate into the MOO, etc.); the type of object distribution (where should
objects execute); and architectural services (what additional services should the
architecture provide, and where should they be located). Each issue is explored
in more detail in the following sections.
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3.1 Level of Interoperability Support

The level of interoperability support describes what type of interoperability
functionality should be provided by the architecture and how the functionality
fits within the MOO.

Should, for example, the interoperability architecture provide a set of additional
room verbs which allow users to interact across MOO boundaries, for example
a Remote Who (RWHO), or a Remote Page (RPAGE) command. Or should the
interoperability architecture provide a set of generic ‘net aware’ objects that
encapsulate interoperability functions. Or should it simply provide some low
level library functions which facilitate interoperability.

The primary approach taken by this project was to develop low level, general
purpose library functions. This approach provided a great deal of flexibility,
because the low level library functions provide the connectivity, any style of
object can be shared across MOO boundaries. Also, by using low level library
functions, interoperability is not tied to specific objects, so any existing objects
can be converted.

However, the low level library functions approach has meant that all higher
level functionality still must be implemented. This may mean developing new
object to provide user level interoperability, or modifying existing objects (like
rooms, or players) to provide them with across MOO functionality.

Also because the library functions are called directly as verbs, any modification
to the library function’s parameters, would mean modifying all the places in
which it is used.

3.2 Type of Object Distribution

Another key interoperability issue is the type of object distribution; where and
how should the object execute. Should MOO interoperability implement a form
of Remote Verb Invocation (RVI); conceptually similar to the RPC/RMI model
where an object’s verb is executed on the remote host under the control of the
local host and local user? Or should it implement some form of Remote Code,
Local Execution (RCLE) model; conceptually similar to the Applet Model,
where the object’s code or binary is transferred from the remote host to the local
host, and executed as a local object?
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The RVI model of interoperability provides a very powerful architecture for
developing distributed objects. Conceptually it works like RPC/RMI
architectures, where an object on one MOO can make a remote verb call to an
object on a remote MOO. However one major problem with RVI style of
connectivity is providing a user context in which the remote object executes.

All objects within a MOO run within a user context. That context is
- encapsulated within the object, and controls what functions an object can or
cannot perform. For example a ‘wizard’ object, even when used by a non-
wizard, is capable of more functions, than a non-wizard object. User contexts
also control which users can perform what functions. For example a
‘programmer’ user is capable of executing commands a non-programmer
cannot.

The issue for RVI, is what user context to use, and how to enforce it? Should a
RVI call to a remote verb execute with a user context equal to the requesting
user’s, or should it run at a higher or lower level of security? Also should users
on the remote host be aware that a RVI call is in progress, and should they be
able to effect it?

While RCLE style of distribution is intuitively ideal for many interoperability
functions, for example moving a player, or an object between MOOs, it does
include a high level of complexity. Most of this complexity is caused by object
inheritance and object identification.

The MOO supports run time binding of child objects with their parents. So
when a verb of a child object is executed, any parent verbs which provide some
of the child verb’s functionality are also called. The issue for RCLE style of
object distribution, is how to deal with this style of object inheritance.

The second problem RCLE causes is that of object identification. Each object is
uniquely identified on its local MOO by an object number. Object numbers are
only guaranteed to be unique within a MOO. When objects are moved between
MOOs some method of dealing with possible object number clashes must also
be used.

3.3 Architectural Services

Architectural services describe what additional services to support or enhance
interoperability the architecture should provide, and where (at what level or
within which component) the service should be placed. Architectural services
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add value to the architecture by providing services above those provided by the
object distribution method.

Basic architectural services should include; MOO and object location/naming
services, and object trader services.

There are generally two types of MOO and object naming approaches;
federated or domain. Within federated naming, all object names are unique
within the federation of interconnected MOOs. For example, an object called
ObjOne on BigMoo may be registered as Cookie via the naming service. The
object name Cookie would be unique within the federation and any references
to Cookie would be resolved back to the MOO name and the MOO unique
object name.

With federated naming it may also be possible to register multiple physical
objects under the one logical name and implement some type of dynamic
resolution. For example ObjOne on BigMoo, WizOObject on BigMoo, and
WizOObject on LittleMoo may all be registered as Cookie. The name resolution
service could (based on some policy) decide which physical object to resolve to.
This decision may, for example, be based on simple rules, or it may be based on
the load of the respective MOOs, or it may be based on the how current the
object is.

The second style of MOO and object naming is domain naming. Within domain
naming the object is registered as being present on a specific MOO. For
example, the object ObjOne on BigMoo, may be named as Cookie on Collins
(Collins may be the registered name for BigMoo). The object’s name is only
unique within a MOO (domain), and any calls to the object name must also
include its registered MOO (domain) name. For example to access ObjOne on
BigMoo (registered as Cookie on Collins), the fully qualified name would be
used.

The MOQ interoperability architecture should also provide an object trading
service. Object trading services are conceptually similar to trader services
provided via OMG’s CORBA architecture [5]. Within CORBA, objects are
registered as providing a specific services, clients (in CORBA a client is a
program which users the services provided by a server) query the trader by
passing it a description of the service required. The trader returns a reference to
an object which can provide the needed service.

Within the MOO interoperability architecture, traders perform a very similar
function. Objects are registered as providing a specific service or specific data, a
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user can query the trader (via some intermediate object). The trader returns the
name of an object capable of providing the required service, or the required
data.

4. Interoperability Architectures

This section describes the work done in developing a MOO interoperability
architecture. The first section describes the minimal architecture requirements
of any MOO interoperability architecture, and the second section describes the
three different architectures developed, and compares each with the minimal
architecture requirements.

4.1 Minimal Architectural Requirements

The architectural requirements describe the basic functionality any MOO
interoperability architecture developed for this project would need to provide
to fulfil the project’s goals.

The key requirements include;

e Provide RVI style of connectivity.

e Provide support via low level, library functions.

¢ Be low maintenance.

e Be scalable - no hard limits on the number of MOOs or objects.

e It should provide a method of Object and/or MOO Registration.

The low maintenance goal describes how much additional development time
the architecture adds to the development of interoperable MOO objects. Does a
large amount of additional MOO (or other) code need to be developed to make
the MOO object accessible? Is the object or MOO registration process complex
and time consuming? Do considerable changes to the architecture need to be
made each time a new MOO or object needs to be registered?

4.2 Architectural Prototypes

Three different architectural prototypes were developed; Peer To Peer,
Message Switching Server, and Client/Server via CORBA.

As well as phototyping different interoperability architectures, each prototype
also made use of different sets of underlying technologies. The different
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functionality afforded by these different technologies is only identified when
they have a direct effect on the functionality of the architecture.

The three different architectures are described in detail in the following
sections.

42.1 Peer to Peer

The first architecture prototyped was a simple Peer to Peer architecture. Each
MOO was connected to every other MOO in the federation, and several simple,
interactive, across MOQ functions were provided. These functions included;
RWHO (remote who), RPAGE (remote page) and RCOPY (a copy command
which copied an object from one MOO to the other). This architecture is
illustrated graphically by figure 1.

This architecture allowed users to interact with each other (in a very limited
way) across MOO boundaries. It also provided a very crude form of RCLE style
distribution, via the RCOPY command. Users could copy an object from a
remote MOO to their local MOO, and execute the object locally.

The object inheritance problem associated with RCLE style distribution was
solved by restricting the objects that could be moved to children of objects
available on all MOOs within the federation. The problem of object
identification also associated with RCLE style distribution was solved by re-
registering the remote object as a local object as part of the remote copy process.

* The MOO registration
server incorporated
within each MOO

Figure 1. Peer to Peer architecture

Since this architecture didn’t provide direct (interactive) access to remote
objects, no object registration/naming, or object trader services were needed.
However MOO registration services were still needed, because users needed to
identify a remote MOO, in order to direct their across MOO functions.
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MOO registration was achieved by incorporating a MOO naming service within
each MOO, as shown in figure 1. The MOO naming service mapped the well
known MOO name to the unique, implementation dependent MOO
information, for example the host machine of the MOO, the port it listened on.
No formal method to ensure the uniqueness of a well known MOO name
within the network was developed.

4.2.1.1 Architectural Performance

While very simple to develop and deploy, this architecture provided only
limited MOO interoperability. Also building the architecture from MOO object
and library functions, did limit the performance of this architecture.

The lack of a central server to provide MOO registration (and possible object
registration if MOO interoperability was expanded) would limit this
architecture’s expendability, and make it difficult to include higher level
architectural services like object traders.

4.2.1.2 Closeness to Minimal Architectural Requirements

The prototype implementation of this architecture failed to provide many of the
features needed by the ideal architecture, including the provision of RVI style of
commands, a method of object registration.

4.2.2 Message Switching Server

The second prototype developed, conceptually modelled a packet switching
network. All interaction between MOOs within the federation, were via well
defined messages, with the flow of messages between the federated MOOs
being controlled by the Message Switching Server (MSS). This architecture is
illustrated graphically in figure 2.

Typically, a MOO would create a message (in order to fulfil a user’s request)
and pass the message to the MSS. The MSS would interrogate the message, and
pass it to the MOO specified in the destination address, or perform the action
specified in the message itself (two of the architecture’s services were physically
located within the MSS). If the message was passed on to a MOO, the MOO
would perform the required action and package a return message, using the
return address of the original message as the destination address, and it own
address as the return address. This message would then be passed to the MSS,
which would pass it to original MOO.
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While at the lower level this architecture was built around well formatted
messages, for the MOO object developer, it provided a powerful RVI interface.
MOO objects could remotely execute the verbs of remote objects, pass
parameters to remote verbs, and receive any returned values.

The RVI interface provides a low level MOO programming library, as well as a
generic object. The generic object was used as the parent for any objects that
need to support RVI calls. The generic object contained several MOO verbs and
code stubs needed to support RVI calls.

The problem of providing a user context for RVI style of distribution was
addressed through the use of a control connection. When the MSS connected to
each MOO, it connected through a control connection. The control connection
was simply a user account, with wizard access. Any RVI calls would run within
the context of the control connection.

* MOO Registration Service
M0O02

+ MOO Availability Service

MOOI MOO3

Figure 2. Message Switching Server Architecture.

As illustrated by figure 2, the MSS architecture also provided a MOO
registration service, which was physically located within the MSS. All MOOs
were registered with the MOO registration service, and identified by a unique
well known name. This well known name was used as a part of RVI call.

As well as providing a MOO registration service, the MSS architecture also
provided a MOO availability service. Located within the MSS, (see figure 2), the
MOO availability service, could report on which MOOs were currently
available (i.e. connected), and which MOOs were registered but not available
(i.e. not currently connected).

Although not explicitly implemented in this prototype, the structure of this
architecture did provide an incomplete form of domain naming. When RVI calls
were made, the registered, well known MOO name, the object number and the

11
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name of the verb to be executed, were used to form a fully qualified address.
The Object number was unique within the MOO (domain), and the verb name
was unique within the object.

Although not implemented, this architecture would also lend it self to
federation style naming. With the central server architecture providing for a
clean implementation of a naming service, with possible support for dynamic
name resolution.

4.2.2.1 Architectural Performance

Among the most powerful aspects of this architecture was its ease of use (for
the MOO object developer) and its low impact on MOO performance. From the
MOO object developer’s view, RVI calls were performed through a few simple
library functions; and there was little difference in the amount of effort needed
to make a local or remote verb call. Also because the complexities of message
routing was handled by the MSS, the RVI calls had little performance impact on
the MOOs.

However the MSS architecture does require that only objects which are children
of the generic object are able to make and accept RVI calls. This requirement
may prevent existing objects from being shared.

While the central message server does provide a very clean architectural model,
the use of a central server does have inherent limitations. If more complete
object registration features were included, or if the number of federated MOO,
or the amount of message traffic was to increase, server performance may
degrade.

4.2.2.2 Closeness to Minimal Architectural Requirements

The MSS architecture comes very close to being an ideal architecture. It
provides most of the key features, including; provision of RVI style of
distribution, provision of low level, library functions, its low maintenance, and
its extensible.

However the current implementation of the prototype does not provide any
object registration functions. It also restricts the objects which can be shared to
children of the generic broker object, which may limit its usefulness.
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4.2.3 Client/Server via CORBA

The final prototype was built with CORBA. While perhaps the most complex
architecture, it is by far the most promising. CORBA products provide many of
the architecture services that are needed, as well as providing seamless
integration of MOO objects, and MOO users with objects outside the MOO.

The Client/Server via CORBA architecture was built in two parts, the server
side and the client side. The server side of the architecture is responsible for
exposing MOO objects, via CORBA, to the outside world. The client side of the
architecture is responsible for providing MOO users with the ability to make
calls to CORBA objects.

MOO
4 Server - > CORBA '8 '
Imp . . Server P )
s R . Other Corba

Objects

Figure 3. Server Side Architecture

Figure 3 illustrates the server side of the architecture. For each MOO object to
be exposed via CORBA, a server implementation (Server Imp) and CORBA
server components are created.

The server implementation component is responsible for maintaining a
connection with the MOO, executing object verbs, and gathering values
returned by the verbs. The CORBA server component is responsible for
maintaining a connection with the CORBA ORB, translating requests from the
CORBA ORB into actions for the server implementation component.

Once a MOO object has been exposed by a CORBA server, it is accessible to any
CORBA compliant client, regardless of the client’s location.

Figure 4 illustrates the client side of this architecture. Client connections from a
MOO to the CORBA ORB are performed via connection persistent proxies. To

13
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connect to a CORBA server, the MOO first requests a new proxy from the
Client Proxy Server (CPS). The CPS creates a new client proxy for the exclusive
use of the requesting MOO user. The proxy translates the MOO depending
requests into CORBA requests, and CORBA return values, into MOO values.

CORBA ORB
v . A
SProxy) '
. ) " Other Corba
Objects

Figure 4. Client Side Architecture

As with the server side of this architecture, the proxy can be used to
communicate with any CORBA compliant object, within, or external to a MOO.

While this architecture made use of several different low level communication
methods, it provides the MOO object developer with a very simple, and very
clean RVI interface. The RVI interface, physically implemented as a
programming library, provides the MOO object developer with RVI, and
Remote Property Calls functionality.

By default this architecture implemented a form of federated naming; all
exposed MOO objects are identified by a unique, well known name. These
names are registered with the CORBA Implementation Repository (IR). The IR
can be queried by any CORBA compliant client.

Once registered, all calls to the MOO objects were via its registered name. This
style of object naming is intrinsic to the CORBA implementation, where the
focus is on the object not the location of the object.

Perhaps the most interesting functionality provided by the underlying CORBA
technology is its ability to integrate with any CORBA compliant server or client.
From the MOO object developer’s view, there is no difference between a MOO
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object exposed via CORBA, or a non-MOO object exposed via CORBA. The
RVI, and Remote Property Calls library still provides the same functionality.

And from the view of a CORBA client (a CORBA client is an application, or part
of an application which makes calls to a CORBA server), there is no real
difference between a MOO object exposed via CORBA and a non-MOO object
exposed via CORBA, the functionality afforded by both is the same.

4.2.3.1 Architectura] Performance

The use of CORBA as a technology to support MOO interoperability provided a
very flexible way to integrate, not only multiple MOOs, but also MOOs with
external objects and external objects with MOO:s.

The CORBA standard also describes a collection of standard network services;
including, Object Trading and Object Location services. The functions these
services provide would be very applicable to MOOs interoperability.

However, the Client/Server via CORBA architecture is complex, with a large
number of components and high bandwidth and machine usage requirements.
Also the current CORBA/JAVA standard has not been formalised (voting on
the current revision will not close until September 1997).

4.2.3.2 Closeness to Minimal Architectural Requirements

The client/server via CORBA architecture is very close to being an ideal
architecture. It supports most of the features identified as important, including;
provision of RVI interaction, provision of low level, library functions, and object
registration.

One key issue of this architecture is the amount of additional code needed to be
developed to expose an object. While the code is relatively simple, and doesn’t
change much between different objects, there is no real way to generate a
generic server which can expose all of the objects. So the amount of additional
developer effort to expose a MOO object via CORBA is still quite substantial.

5. Conclusions

This paper examined the key issues of MOO interoperability, namely; what
MOO functions should an interoperability architecture provide, the type of
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object distribution and what additional services should the architecture
provide.

Based on these issues, an ideal interoperability architecture was then described.
This architecture was ideal for the specific goals of the project, and may or may
not be ideal for other MOO interoperability projects.

Three different architectural prototypes were then explored, and their fitness to
the ideal architecture was examined. As pointed out in the discussion, none of
the prototypes developed so far, completely meet the requirements of an ideal
architecture.

Failure to meet this requirement of the ideal architecture is due mostly to the
object and MOO naming requirements of the ideal architecture. Any methods
used to name objects and MOOs will depend, for the most part, on the
environment into which the interoperability architecture is place, as well as
exact user requirements, and the structure of the CSCW system which the MOO
will support.
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